
Clear.Dental

Full re-evaluation of git

Why reconsider?

Already moving a lot of the frameworks
and foundations

5 6

qmake cmake

QML Material

?

What I like
about using

the filesystem
as a database

Typical .json file

Much easier to teach doctors about
.ini and .json files vs. SQL

Typical .ini file

No need to make a full API,
pathnames are the API

You can import any kind of file just
by dragging and dropping

You can drag/drop .stl files and it would be part of the patient’s chart

You can access data even if the
internet / cloud server is down
No more having to worry about AWS outages

You can use any built-in app for
opening files
Use something like F3D or Blender3D to view the .stl or .ply files

You can distribute the
computational load to other
servers

Central
serverMessage

server
Deep

Learning
server

Client PC

Client PC
Client PC

Client PC

So the other servers don’t slow down the clients when reading the data for analysis.

What I like
about git

Really easy to setup via command
line; easy to start anywhere

Built-in way to deliver payloads
since a specific commit

Full D
atabase

Please give me the data after
commit

630035c4b37862f72df7bcd3
90535a05d287c36e

Sure, here is a single
payload of all the changes
since that specific commit

You can see who made what
changes and when

Nothing is ever lost; you can find
what changes are done years ago

Not only two staff members can
work on the same patient, two
staff members can work on the
same file

Front Desk A Front Desk B

Change to 132 Fantasy Ave

Change to setzerg@final.fantasy

You can use symbolic links for
lookup optimizations (great for the
schedule app)

You can use ssl certs and/or use
RSA keys for authentication; great
when using encrypted intranet

What I don’t
like about git

Git really wants you to manage the
conflict, will not accept any more
merges until the current merge
conflict is resolved

5e673addb30ad035af84930cf9d0cd515d5ca0df

0f62027a159827551c86e2aa5411786a0cf1668d

6297e529fc24d8a168ed108add70ce0aba0798c

4e5c882825d1099d86586107681963bddcb79f1e

3f54f8dcb6ff42f6a2b43797fb52bfe0e327796b

Conflict

Doesn’t pick up
these updates

Git is every easy to use via
command line; but not many
people in Dental IT know how to
use the command line

libgit2 is rather big and much
more complicated than using just
the git binary

Android development with git is a
mess

You will always have 2 copies:
the .git objects and the working
copy

Other
possible

alternatives to
replace git

Requirements:

 - Must be open source (OSI)
 - Must handle a decentralized system
 - Should work on Linux, Android, iOS
 - Should be able to work in an intranet
along with an internet node
 - Need to be functional parity with git
 - Doctors must be able to read / write with
minimal training

Apache Couch DB
Pros:
● Open Source (Apache License 2.0)
● Uses JSON; which makes it easier to integrate with QML / Javascript
● You get a RESTful API for free
● Has tools for a distributed database
● Allows for local, cloud, and hybrid cloud solutions

Cons:
● You can’t read and edit the database using regular text editor
● You need the “server” to be running to read / write data; if server process crashes, you can’t

treat patient
● Uses Erlang, which is difficult to port to Android and iOS (for local database)
● A lot of the team members who worked on Couch DB now work at Couchbase which is not

Apache Open Source

rsync
Pros:
● Open Source (GPL v3)
● You still use files as the actual database
● Conflicts are simply overwritten
● Can handle intranet encryption without ssl certificates
● Handles update payloads without having to clone the whole system each time
● Written in C; easy to port

Cons:
● You have to write your own logging system along with a way to keep the old data (to keep it

in same functional parity as git)
● No API or library, you need to use the binary for the functions

Syncthing
Pros:
● Open Source (MPL v2.0)
● You still use files as the actual database
● Automatically / silently handles conflicts
● Can handle intranet encryption without ssl certificates
● Handles update payloads efficiently

Cons:
● You have to write your own logging system along with a way to keep the old data (to keep it

in same functional parity as git)
● No official Android port
● The “API” is just for managing the server, not the data
● When asked in multiple forums, synching users recommended to continue using git

Jujutsu
Pros:
● Open Source (Apache v2.0)
● You still use files as the actual database
● Automatically / silently handles conflicts
● Can handle intranet encryption without ssl certificates
● Handles update payloads efficiently
● Keeps track of changes automatically; can “push” them without having to write code to keep

track

Cons:
● It relies on git, and git’s own dependencies to work
● No API or library; requires command line
● Clear.Dental is supposed to handle the data distribution transparently; not have the user

care too much about the push/pull; therefore jj doesn’t add that much

InterPlanetary File System
Pros:
● Open Source (MIT v2.0)
● You still use files as the actual database
● Works transparently between intranet and internet servers (works similar to BitTorrent); can

work when many of the nodes are down
● Written in Javascript which can integrate with QML directly

Cons:
● No real security in terms of making sure only valid users can access the data; “pinned” data

can be accessed once you know the hash
● Conflicts are not resolved transparently
● More designed to distribute publicly available websites rather than private data

Conclusion:

Going to stick
with git

Other things noted:

 - Other cloud services don’t give doctors
any options to manage the conflicts; this is a
major issue that the dental community
needs to address
 - Doing an in-house solution would take far
more effort then modifying git

Thank you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

